COURSE INFORMATION

Course Code	BMUH 532	Course Name	Signal Proc	Signal Processing					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS	
Elective	Graduate	Fall & Spring	English	3	0	0	3	6	

Department	: Electrical and Computer Engineering
Prerequisites/Requirements	
for Admission	•
Mode of delivery	: Face to Face
Course coordinator	: Dr. Mehmet Ali Olpak
Course lecturer(s)	:
Course assistant(s)	
Course description/aim	: The students are expected to understand the concepts of signal and system, and to learn the available methods for analyzing linear time invariant (LTI) systems such as differential/difference equations, Fourier and Laplace transforms.
Course contents	: Introduction to signals and systems, time-domain analysis of continuous- time LTI systems, time domain analysis of discrete-time LTI systems, continuous and discrete Fourier series and Fourier transforms, Laplace transform, Z-transform
Recommended optional program components	: None
Compulsory Attendance	: Yes

Course Learning Outcomes

	Learning outcome	Teaching	Assessment method(s)
		Methods/Techniques	
	Students will be able to		
1	Understand the concepts of signal and	Lecture, Lecture with	Midterm and Final
	system	Discussion	Exams
2	Learn how to perform frequency analysis of	Lecture, Lecture with	Midterm and Final
	continuous and discrete-time LTI systems	Discussion	Exams
3	Discuss various applications of LTI systems	Lecture, Lecture with	Midterm and Final
	in engineering	Discussion	Exams

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Definitions of signal and system concepts, continuous and discrete time signals and systems	Textbook/ Lecture Notes	3
2	Time domain analysis of continuous time LTI systems	Textbook/ Lecture Notes	3
3	Time domain analysis of discrete time LTI systems	Textbook/ Lecture Notes	3
4	Periodic signals and Fourier series	Textbook/ Lecture Notes	3
5	Continuous-time Fourier transform and applications	Textbook/ Lecture Notes	3
6	Discrete-time Fourier transform and applications	Textbook/ Lecture Notes	3
7	Sampling	Textbook/ Lecture Notes	3

COURSE INFORMATION

8	Midterm		3
9	Laplace transform	Textbook/ Lecture Notes	3
10	Z-transform	Textbook/ Lecture Notes	3
11	Filtering	Textbook/ Lecture Notes	3
12	Special topics	Textbook/ Lecture Notes	3
13	Special topics	Textbook/ Lecture Notes	3
14	Special topics	Textbook/ Lecture Notes	3
15	Final exam		3
16			

Sources

Course notes/textbooks	: A. V. Oppenheim, A. S. Willsky, S. H. Nawab, Sinyaller ve Sistemler, İkinci Basım, Prentice Hall, 1996.
Readings	:
Supplemental readings	:
References	:

Evaluation System

Work Placement	Number	Percentage of Grade
Attendance		
Quizzes		
Homework	2	30
Presentation		
Laboratory/Practice		
Report(s)		
Graduate Thesis/Project		
Seminar		
Projects		
Midterm exam(s)	1	30
Others		
Final exam	1	40
	Total	100
	60	
	40	
	Total	100

COURSE INFORMATION

Workload Calculation

Activity	Number	Time (hours)	Total work load (hours)	
Course hours	14	3	42	
Individual study for course	14	8	112	
Midterm exam(s)	1	3	3	
Final exam	1	3	3	
Individual study for homeworks	2	5	10	
Individual study for final exam	1	20	20	
		Total	190	
		ECTS Credit(Total/30)	6	

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1											
LO2											
LO3											

Contribution Level : 1 Very low, 2 Low, 3 Medium, 4 High, 5 Very High